Give Protocol Documentation

This comprehensive guide covers Give Protocol’s advanced search and discovery features, helping users find relevant organizations, campaigns, and volunteer opportunities efficiently.

Overview

Give Protocol’s search and discovery system uses advanced algorithms, machine learning, and user behavior analysis to connect donors with causes they care about and match volunteers with meaningful opportunities.

Key Features

  • Intelligent Search: Natural language processing and semantic understanding
  • Personalized Recommendations: AI-driven matching based on interests and history
  • Advanced Filtering: Multi-dimensional filtering and sorting options
  • Real-time Results: Instant search with dynamic updates
  • Cross-entity Search: Find organizations, campaigns, and opportunities in one search

Search Architecture

Search Infrastructure

graph TD
    A[User Query] --> B[Query Parser]
    B --> C[NLP Processing]
    C --> D[Search Engine]
    D --> E[Elasticsearch Cluster]
    D --> F[ML Ranking Service]
    E --> G[Primary Results]
    F --> H[Personalized Ranking]
    G --> I[Result Merger]
    H --> I
    I --> J[Final Results]
    J --> K[User Interface]

Technology Stack

  • Search Engine: Elasticsearch 8.x
  • NLP Processing: spaCy and BERT models
  • Recommendation Engine: TensorFlow-based collaborative filtering
  • Caching Layer: Redis for frequent queries
  • Analytics: Apache Spark for behavior analysis

Search Functionality

Query Types Supported:

  • Simple keyword search
  • Phrase matching with quotes
  • Boolean operators (AND, OR, NOT)
  • Wildcards and fuzzy matching
  • Geographic search

Example Queries:

education "New York"
environmental AND conservation
volunteer opportunities near me
crypto-friendly charities
disaster relief -administrative

Search Syntax:

field:value AND (field2:value2 OR field3:value3) NOT field4:value4

Searchable Fields:

  • name: Organization or campaign name
  • category: Cause category
  • location: Geographic location
  • tags: Associated tags
  • description: Full-text description
  • ein: Tax ID number (organizations)
  • verified: Verification status

Natural Language Processing

Understanding Intent:

// Query: "I want to help children in Africa with education"
{
  intent: "donate",
  cause: "education",
  beneficiary: "children",
  location: "Africa",
  sentiment: "positive"
}

Synonym Expansion:

  • “kids” → “children”, “youth”, “minors”
  • “help” → “support”, “assist”, “aid”
  • “education” → “schools”, “learning”, “literacy”

Discovery Features

Personalized Recommendations

Recommendation Algorithm:

def get_recommendations(user_id, context):
    # Collaborative filtering
    similar_users = find_similar_users(user_id)
    cf_recommendations = aggregate_preferences(similar_users)

    # Content-based filtering
    user_interests = get_user_interests(user_id)
    cb_recommendations = match_content(user_interests)

    # Hybrid approach
    recommendations = merge_recommendations(
        cf_recommendations,
        cb_recommendations,
        weights={'cf': 0.6, 'cb': 0.4}
    )

    # Context adjustment
    return adjust_for_context(recommendations, context)

Trend Calculation:

  • Recent donation velocity
  • Social media mentions
  • News coverage
  • Seasonal relevance
  • Emergency response needs

Categories:

  • Trending Now
  • Rising Stars
  • Seasonal Causes
  • Emergency Appeals
  • Local Highlights

Geographic Discovery

Location-Based Features:

  • Automatic location detection
  • Radius-based search
  • Regional cause mapping
  • Local volunteer opportunities
  • Community impact visualization

Map Integration:

// Initialize map view
const mapView = new GiveProtocolMap({
  center: userLocation,
  zoom: 12,
  layers: ["organizations", "opportunities", "events"],
});

// Add search results to map
mapView.addResults(searchResults, {
  clustering: true,
  heatmap: true,
  filters: activeFilters,
});

Filter System

Category Filters

Primary Categories:

  • Animals & Wildlife
  • Arts & Culture
  • Community Development
  • Disaster Relief
  • Education
  • Environment
  • Health & Medicine
  • Human Rights
  • International Aid
  • Religion & Spirituality

Sub-category Examples:

{
  "Education": [
    "Early Childhood",
    "K-12 Schools",
    "Higher Education",
    "Adult Literacy",
    "STEM Programs",
    "Special Education"
  ]
}

Advanced Filters

Organization Filters:

  • Verification level
  • Tax-deductible status
  • Size (budget/staff)
  • Years active
  • Transparency rating
  • Payment methods accepted

Campaign Filters:

  • Funding goal range
  • Deadline
  • Matching funds available
  • Progress percentage
  • Update frequency

Volunteer Filters:

  • Time commitment
  • Skill requirements
  • Virtual/in-person
  • Background check required
  • Age restrictions
  • Accessibility

Dynamic Filtering

// Real-time filter updates
const filterManager = new FilterManager({
  onChange: (filters) => {
    // Update results without page reload
    searchAPI.updateResults(filters);

    // Update URL for sharing
    updateURLParams(filters);

    // Track filter usage
    analytics.track("filter_applied", filters);
  },
});

// Smart filter suggestions
filterManager.suggestFilters(searchResults);

Ranking Algorithm

Relevance Scoring

Factors Considered:

  1. Text Relevance (30%)

    • Title matches
    • Description relevance
    • Tag alignment
  2. User Behavior (25%)

    • Click-through rate
    • Conversion rate
    • Dwell time
  3. Entity Quality (20%)

    • Verification status
    • Completeness score
    • Update recency
  4. Social Signals (15%)

    • User ratings
    • Social shares
    • Testimonials
  5. Personalization (10%)

    • User history
    • Preference matching
    • Behavioral patterns

Machine Learning Model

# Ranking model architecture
model = tf.keras.Sequential([
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(64, activation='relu'),
    tf.keras.layers.Dense(32, activation='relu'),
    tf.keras.layers.Dense(1, activation='sigmoid')
])

# Features include:
# - Query-document similarity
# - User engagement metrics
# - Entity characteristics
# - Temporal factors
# - User-entity affinity

Search API

Basic Search Endpoint

GET /api/v1/search

Parameters:

  • q (required): Search query
  • type: Entity type (organization, campaign, opportunity)
  • category: Filter by category
  • location: Geographic filter
  • radius: Distance in miles
  • verified: Verification status
  • sort: Sorting option
  • page: Page number
  • limit: Results per page

Example Request:

GET /api/v1/search?q=education&type=organization&location=NYC&radius=50&verified=true&sort=relevance&page=1&limit=20

Advanced Search Endpoint

POST /api/v1/search/advanced
Content-Type: application/json

{
  "query": {
    "must": [
      { "match": { "description": "education" } }
    ],
    "should": [
      { "match": { "tags": "STEM" } }
    ],
    "filter": [
      { "range": { "founded": { "gte": "2010" } } },
      { "term": { "verified": true } }
    ]
  },
  "sort": [
    { "_score": "desc" },
    { "rating": "desc" }
  ],
  "aggs": {
    "categories": {
      "terms": { "field": "category" }
    }
  }
}

Autocomplete Endpoint

GET /api/v1/search/autocomplete?q=educ

Response:
{
  "suggestions": [
    {
      "text": "education",
      "type": "category",
      "count": 1234
    },
    {
      "text": "Education First Foundation",
      "type": "organization",
      "id": "org_123"
    }
  ]
}

User Interface Components

<!-- Advanced search bar component -->
<div class="search-container">
  <input
    type="text"
    id="search-input"
    placeholder="Search causes, organizations, or opportunities..."
    autocomplete="off"
  />
  <div class="search-filters">
    <button class="filter-btn" data-filter="location">
      <i class="icon-location"></i> Near me
    </button>
    <button class="filter-btn" data-filter="verified">
      <i class="icon-verified"></i> Verified only
    </button>
  </div>
  <div id="search-suggestions" class="suggestions-dropdown"></div>
</div>

Result Display

// Result card component
const ResultCard = ({ result }) => (
  <div className="result-card">
    <div className="result-header">
      <img src={result.logo} alt={result.name} />
      <div className="result-title">
        <h3>{result.name}</h3>
        {result.verified && <VerifiedBadge />}
      </div>
    </div>
    <p className="result-description">
      {highlightMatches(result.description, searchQuery)}
    </p>
    <div className="result-meta">
      <span className="category">{result.category}</span>
      <span className="location">{result.location}</span>
      <span className="rating"> {result.rating}</span>
    </div>
    <div className="result-actions">
      <button onClick={() => viewDetails(result.id)}>Learn More</button>
      <button onClick={() => quickDonate(result.id)}>Donate Now</button>
    </div>
  </div>
);

Filter Interface

// Dynamic filter component
const FilterPanel = ({ availableFilters, onFilterChange }) => {
  const [activeFilters, setActiveFilters] = useState({});

  const handleFilterChange = (filterType, value) => {
    const newFilters = {
      ...activeFilters,
      [filterType]: value,
    };
    setActiveFilters(newFilters);
    onFilterChange(newFilters);
  };

  return (
    <div className="filter-panel">
      {Object.entries(availableFilters).map(([type, options]) => (
        <FilterGroup
          key={type}
          type={type}
          options={options}
          selected={activeFilters[type]}
          onChange={(value) => handleFilterChange(type, value)}
        />
      ))}
    </div>
  );
};

Search Analytics

Tracking Implementation

// Search analytics tracking
const searchAnalytics = {
  trackSearch: (query, filters, results) => {
    gtag("event", "search", {
      search_term: query,
      filters_used: Object.keys(filters),
      results_count: results.length,
      has_results: results.length > 0,
    });
  },

  trackClick: (result, position) => {
    gtag("event", "search_result_click", {
      result_id: result.id,
      result_type: result.type,
      position: position,
      search_query: currentQuery,
    });
  },

  trackConversion: (result, action) => {
    gtag("event", "search_conversion", {
      result_id: result.id,
      action: action, // 'donate', 'volunteer', 'share'
      value: result.amount || 0,
    });
  },
};

Performance Metrics

Key Metrics:

  • Average search latency
  • Click-through rate by position
  • Conversion rate by query type
  • Zero-result rate
  • Query refinement rate

Dashboard Example:

-- Top performing searches
SELECT
  query,
  COUNT(*) as search_count,
  AVG(click_through_rate) as avg_ctr,
  AVG(conversion_rate) as avg_conversion
FROM search_analytics
WHERE date >= CURRENT_DATE - INTERVAL '30 days'
GROUP BY query
ORDER BY search_count DESC
LIMIT 100;

Mobile Search Experience

Touch-Optimized Interface

// Mobile search optimizations
const mobileSearch = {
  init: () => {
    // Voice search
    if ("webkitSpeechRecognition" in window) {
      enableVoiceSearch();
    }

    // Location-based search
    if ("geolocation" in navigator) {
      enableLocationSearch();
    }

    // Infinite scroll
    enableInfiniteScroll({
      threshold: 100,
      loadMore: loadNextPage,
    });
  },
};

Offline Capabilities

// Service worker for offline search
self.addEventListener("fetch", (event) => {
  if (event.request.url.includes("/api/search")) {
    event.respondWith(
      caches
        .match(event.request)
        .then((response) => response || fetch(event.request))
        .catch(() => caches.match("/offline-search")),
    );
  }
});

SEO Optimization

Search Results Pages

<!-- SEO-friendly search results -->
<div itemscope itemtype="http://schema.org/SearchResultsPage">
  <h1>Search Results for "education"</h1>
  <meta itemprop="about" content="education charities" />
  <div itemprop="mainEntity" itemscope itemtype="http://schema.org/ItemList">
    <link
      itemprop="itemListOrder"
      href="http://schema.org/ItemListOrderDescending"
    />
    <meta itemprop="numberOfItems" content="50" />
    <!-- Individual results -->
  </div>
</div>

Structured Data

{
  "@context": "https://schema.org",
  "@type": "SearchAction",
  "target": {
    "@type": "EntryPoint",
    "urlTemplate": "https://give.io/search?q={search_term}"
  },
  "query-input": "required name=search_term"
}

Best Practices

For Users

  1. Effective Searching

    • Use specific keywords
    • Apply relevant filters
    • Try different search terms
    • Use location filters for local results
  2. Discovery Tips

    • Explore trending causes
    • Check recommendations
    • Save searches for updates
    • Follow favorite organizations

For Organizations

  1. Optimization

    • Complete all profile fields
    • Use relevant keywords
    • Update content regularly
    • Add high-quality images
  2. Visibility

    • Maintain verification
    • Encourage reviews
    • Share updates
    • Engage with supporters

For Developers

  1. Integration

    • Cache frequent searches
    • Implement pagination properly
    • Handle errors gracefully
    • Monitor API usage
  2. Performance

    • Debounce search input
    • Lazy load images
    • Use search analytics
    • Optimize for mobile

Future Enhancements

Planned Features

  • Visual search capabilities
  • Multi-language support
  • AI-powered chat search
  • Augmented reality discovery
  • Blockchain-verified results

Research Areas

  • Semantic search improvements
  • Federated search across platforms
  • Predictive search suggestions
  • Context-aware recommendations
  • Privacy-preserving personalization
Last updated: August 25, 2025

Search Results

Navigate
Enter Select
Esc Close